Click here to view PowerPoint presentation; Press Esc to exit . g‘

DORGANIZATION

Designing and Implementing a Family of Intrusion Detection Systems

Richard A. Kemmerer
Reliable Software Group
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
USA

kemm@cs.ucsh.edu

Intrusion detection systems (IDSs) analyze information about the activities performed in a computer system or
network, looking for evidence of malicious behavior. Attacks against a system manifest themselves in terms of
events. These events can be of a different nature and level of granularity. For example, they may be represented
by network packets, operating system calls, audit records produced by the operating system auditing facilities, or
log messages produced by applications. The goal of intrusion detection systems is to analyze one or more event
streams and identify manifestations of attacks.

The intrusion detection community has developed a number of different tools that perform intrusion detection
in particular domains (e.g., hosts or networks), in specific environments (e.g., Windows NT or Solaris), and at
different levels of abstraction (e.g., kernel-level tools and alert correlation systems). These tools suffer from two
main limitations: they are developed ad hoc for certain types of domains and/or environments, and they are difficult
to configure, extend, and control remotely.

In the specific case of signature-based intrusion detection systems the sensors are equipped with a number of
attack models that are matched against a stream of incoming events. The attack models are described using an ad
hoc, domain-specific language (e.g., N-code, which is the language used by the Network Flight Recorder intrusion
detection system). Therefore, performing intrusion detection in a new environment requires the development of
both a new system and a new attack modeling language. As intrusion detection is applied to new and previously
unforeseen domains, this approach results in increased development effort.

Today’s network are not only heterogeneous, but also dynamic. Therefore, intrusion detection systems need
to support mechanisms to dynamically change their configuration as the security state of the protected system
evolves. Most existing intrusion detection systems are initialized with a set of signatures at startup time. Updating
the signature set requires stopping the 1DS, adding new signatures, and then restarting execution. Some of these
systems provide a way to enable/disable some of the available signatures, but few systems allow for the dynamic
inclusion of new signatures at execution time. In addition, the ad hoc nature of existing IDSs does not allow one to
dynamically configure a running sensor so that a new event stream can be used as input for the security analysis.

Another limitation of existing IDSs is the relatively static configuration of responses. Normally it is possible
to choose only from a specific subset of possible responses. In addition, to our knowledge, none of the systems
allows one to associate a response with intermediate steps of an attack. This is a severe limitation, especially in
the case of distributed attacks carried out over a long time span.

Finally, the configuration of existing IDSs is mostly performed manually and at a very low level. This task
is particularly error-prone, especially if the intrusion detection systems are deployed across a very heterogeneous
environment and with very different configurations.

This talk describes a framework for the development of intrusion detection systems, called STAT, that over-
comes these limitations. The STAT framework includes a domain-independent attack modeling language and a
domain-independent event processing analysis engine. The framework can be extended in a well-defined way to
match new domains, new event sources, and new responses. The resulting set of applications is a software family
whose members share a number of features, including dynamic reconfigurability and a fine-grained control over
a wide range of characteristics. The main advantage of this approach is the limited development effort and the
increased reuse that result from using an object-oriented framework and a component-based approach.

STAT is both unique and novel. First, STAT is the only known framework-based approach to the development
of intrusion detection systems. Second, even though the use of frameworks to develop families of systems is a
well-known approach, the STAT framework is novel in the fact that the framework extension process includes, as
a by-product, the generation of an attack modeling language closely tailored to the target environment. This talk
focuses primarily on the STAT framework.

Paper presented at the RTO IST Symposium on “Adaptive Defence in Unclassified Networks”,
held in Toulouse, France, 19 - 20 April 2004, and published in RTO-MP-IST-041.

RTO-MP-IST-041 KN-1

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 2004

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLEAND SUBTITLE

Designing and I mplementing a Family of Intrusion Detection Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Reliable Softwar e Group Department of Computer Science University of

California, Santa Barbara Santa Barbara, CA 93106 USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM 001845, Adaptive Defence in Unclassified Networks (L a defense adaptative pour lesreseaux

non classifies)., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER | 19a. NAME OF
OF PAGES RESPONSIBLE PERSON

56

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Designing and Implementing a Family of Intrusion Detection Systems

ORGANIZATION

s
NIZ

KN -2

RTO-MP-IST-041

Designing and Implementing
A Family of Intrusion Detection
Systems

Richard A. Kemmerer

Reliable Software Group
Computer Science Department
University of California
Santa Barbara, CA 93106, USA
http://www.cs.ucsb.edu/~rsg/STAT/

KN-1

Intrusion Detection

e Analysis of the actions performed by users and applications
looking for evidence of malicious activities

 Two techniques

— Anomaly detection (statistics, profiles, specs) (IDES, RST, ADAM)
» Detects previously unknown attacks

« Difficult to configure (train), generates many false alarms

— Misuse detection (signature analysis) (NFR, Emerald, Snort, STAT)
» Generates few false alarms

» Detects only known attacks, needs continuous updating
e Different domains
— Host-based
— Application-based
— Network-based KN-2

Undesirable Format
for an Intrusion Report

E=ES
File Edit Wiew Go Communicator Help
Y .§ Bookmarks A Go To: |http:/ fwne , con . oo {| 57 What's Related
= . . [1Videoorthe Day |2
Sm.GBTORE - th_e_rs {)_!'ﬂ)l‘ QDEJ\?B.Y Goinside a TS
B } Fe *«-r{?b 4 Carnpus to see

CTick here Click Here hackers in acton!.

Bearch Watch more CNN VIDEQ
CNN.com. v 5] anrises

February 26, 2001 -- Updated 05:21 p.m. EST, 0121 GMT, @ 98 swatchDinternet time
b ! FEATURES:
WORLD D Shirmaomuora cuts Get cash breaking
W5, tribute to Mitrick Mondex
LOCAL
POLITICS
WEATHER
BUSINESS In Other Mews:
SPORTS I ® Hackers hackers everywhere
mﬂ : ® Hacker protest convoy arrives in ‘Washington
HEALTH CNN attacked b\\" UCSB. = Hacker association opposes mandatory reporting of software
ENTERTAINMENT Stanford, and ltalian arrors i
%L Universities = Judge reassighment delays hacker case @
W = Judge compares Microsoft to "Hacker pit”
oy Computers at UCSE and Stanford University were uzed by China. Tai i ff in ovh B
ARTS & STYLE hackers to attack some of the Internet’s most heavily used " =Tire, Janvan Tace QLI SyRervar
MATURE sites. The FBlis pursuing leads that the series of attacks = President, in remarks to Burundi talks, asks Africans to stop
IN-DEPTH were orchestrated by a hacker in Zimbakwe . hacking into the pentaon
ANALYSIS = Cuban hacker diplomat linked to NS spy case identified Fi
myCHN
& 100% o £ 9P B N

KN-3

Intrusion Detection

Intrusion detection is traditionally based on analysis of low-
level events: network packets, system calls, audit records

Intrusion detection has evolved in several ways

— New analysis techniques
— Multiple event sources, possibly introducing distribution
— Abstraction: fusion/correlation of high-level events, e.g., alerts

Monitor and surveillance functionality always/still based on
sensors

KN-4

Intrusion Detection
Sensor Limitations

Sensors are developed in an ad hoc fashion to match
specific environments/domains/event sources

Sensors are hard to configure

Sensors are hard to control

Sensors are hard to extend

Configuration/control/extension is mostly executed statically
Configuration is mostly done manually

|dentifying “meaningful” sensor configurations can be difficult
Number of sensors that can be easily managed is small

KN-5

Solution:
A Web of Sensors

e Set of heterogeneous sensors that provide intrusion
detection functionality within a protected network
— STAT Framework
— STATL and the STAT core

e Sensors controlled, coordinated, and configured by means of
a distributed infrastructure
— MetaSTAT

e EXplicit modeling of component dependencies and current
sensor configuration supports automated “meaningful”
reconfigurations

KN-6

Module
Database

Sensor
Database

Alert
Database

KN-7

Qutline

e STAT and STAT Framework
e STAT Extension Process
e MetaSTAT

KN-8

The STAT Framework

e QObject-Oriented framework for the development of intrusion
detection sensors

e Based on the State Transition Analysis Technique

 Provides a domain-independent attack modeling language,
called STATL

* Provides a “core” domain-independent event processing
analysis engine that implements the STATL semantics

e Supports a well-defined extension process
e Supports flexible and dynamic response mechanisms
* Provides a communication and control infrastructure

KN-9

Set of IDS Applications
IS a Software Family

A number of STAT-based sensors have been developed
leveraging the framework

The result is a “software family” whose members share a
number of features

— Dynamic reconfiguration
— Fine-grained control (response, scenarios)
— Attack specification language

Limited development effort
High level of reuse

KN-10

State Transition
Analysis Technigue

« STAT models penetrations as a sequence of state transitions

 Represents only key activities that lead from an initial safe
state to a final compromised state
— Signature Actions
— State Assertions

KN-11

State Transition Diagrams

Attacker
licitly gains
more privileges

>

limited
privileges

nature actlons
compromised

|n|t|al state
A@%% g

state assertlons
KN-12

USTAT example
ftp-write

» Exploit
— use ftp to create .rhosts file in world-writable ftp home directory
— rlogin using bogus .rhosts file

create_file login read_rhosts

KN-13

STATL

A STATL specification is the description of a complete attack
scenario (a signature) in terms of states and transitions

 Domain-independent language

— Extensions for
* |P networks
» Solaris BSM
 WINNT event logging facility
» Apache event logs
» Syslog facility
* IDMEF Alerts

e Parameterized descriptions
— Generic attacks customizable by installation or policy

KN-14

- STATL Basic Abstractions

Scenarios

— States

— Transitions (consuming, nonconsuming, unwinding)
— Signature actions

— Assertions

— Global environment

— Local environment

— Code blocks

Events

— Defined as trees of generic events encapsulating domain-specific
opaque events

Timers
KN-15

USTAT example
ftp-write

» Exploit
— use ftp to create .rhosts file in world-writable ftp home directory
— rlogin using bogus .rhosts file

create_file login read_rhosts

KN-16

use ustat;

scenario ftp_write

{

int user, pid, inode;
string objname;

initial state sO { }
transition create_file (sO —> s1) nonconsuming
[WRITE w] : (w.euid !'= 0) && (w.owner != w.ruid)
inode = w.inode;
objname = w.objname;

}
}

state s1{}
transition login (s1 —> s2) nonconsuming
[EXECUTE e] : match_name(e.objname, *'login®)

user = e.ruid;
pid = e.pid;

ftp-write In STATL

state s2 { }

transition read_rhosts (s2 —> s3) consuming

[READ r] : (r.pid == pid) && (r.inode == inode)
state s3

string username = userid2name(user);

log(*'%d: by user %s using %s"", user, username, objname);

KN-17

NetSTAT example
UDP-race

use netstat;

scenario UDP_race

{
Host server, racer;
Service X;
IPAddress a s, a c;
Interface i_r;

IPAddress request_ip_src, request_ip_dst;
Port request_udp_src, request_udp_dst;

<* CONSTRAINT
('server in Network.hosts) &&
(X in server.services) &&
(x.protocol == "UDP”) &&
(x.authentication == ""IPaddress”) &&
(a_sin x.ipAddresses) &&
(a_c in x.trustedAddr) &&
(a_c.interface in ProtectedNetwork.interfaces) &&
(racer in Network.hosts) &&
(racer !=server) &&
' (a_c in racer.ipAddresses) &&
i_r in racer.interfaces

*>

state S3 { { log(""compromised™); } }

state S5 { { log(*'under attack'); } }

UDP-race in STATL

transition ClientRequest (S1 -> S2) nonconsuming

[IPDatagram d1 [UDPDatagram ul]]
<* ENDPOINT_PORTS a_c.interface, a_s.interface *> :
(dlsrc==a c) && (dl.dst == a_s) && (ul.dst == x.port)
{
request_ip_src = dl.src;
request_ip_dst = d1.dst;
request_udp_src = ul.src;
request_udp_dst = ul.dst;
}
}

transition ServerReply (S2 -> S4) consuming

[IPDatagram d2 [UDPDatagram u2]]
<* ENDPOINT_PORTS a_s.interface, a_c.interface *> :
(d2.src == request_ip_dst) &&
(d2.dst == request_ip_src) &&
(u2.src == request_udp_dst) &&
(u2.dst == request_udp_src)
}

action SpoofedReply

[Message m2 [IPDatagram d2 [UDPDatagram u2]]]
<* ENDPOINT_PORTS i_r, a_c.interface *>

<* CONSTRAINT ! exists_detached_path(m2.src, d2.src.interface) *> :

(d2.src == request_ip_dst) &&
(d2.dst == request_ip_src) &&
(u2.dst == request_udp_src) &&
(u2.src == request_udp_dst)

}

transition SpoofedReplyl (S2 -> S3) consuming { SpoofedReply }

transition SpoofedReply2 (S4 -> S5) consuming { SpoofedReply }

KN-19

STATL Execution Model

« A STATL scenario has a runtime representation in terms of
— Prototype (global environment and STD definition)
— Instances (local environment, occurrence of an attack)
e Event matching and assertions determine which enabled
transitions fire

e Scenario evolution determined by transition type

— Nonconsuming: New instance in new state and current instance stays
In previous state
— Consuming: Current instance changes its state

— Unwinding: Backtracking to ancestor instance, possibly removing a
subtree of the instance tree

KN-20

The STAT Core Module

 |mplements STATL basic « Defines general semantics
abstractions — Event matching
— Scenario — Scenario processing
« State — Unwinding

* Transitions (consuming, non-
consuming, unwinding)

» Signature actions
» Assertions
» Global environment
» Local environment
» Code fragments

— Events

— Timers

— Synthetic events

KN-21

STAT Extension Process

« STATL language and the core analysis engine are both
extended to deal with a specific domain (host, network,
application), event stream, or platform

e Can be dynamically extended to build a STAT-based sensor
— Language extensions
— Event providers
— Scenario plugins
— Responses modules

e EXxtensions contain data structures and code to operate on
the data structures

KN-22

STAT Extension Process
Uses a Common Format

« A common extension format:
— Saves a considerable amount of development time
— Produces more reliable libraries
— Allows for interchangeable event producers/consumers

e Uses C++ class hierarchy
— Create, destroy, clone, dump, restore, type management

e Subclass STAT framework C++ root classes:
— STAT Event
— STAT Type
— STAT_Provider
— STAT_Scenario

— STAT_Response
KN-23

Language Extension

Set of events and types that characterize the entities of a
particular domain

All event types defined as subclasses of STAT Event
All other types defined as subclasses of STAT Type

Defined events and types can be used in writing STATL
scenarios for the specific domain

Compiled into dynamically-linked libraries (.so or DLL files)
Loaded into the core whenever needed by a scenario

KN-24

Attack Scenarios

Written in STATL with the relevant language extensions

Automatically translated into a subclass of the
STAT Scenario class

Compiled into dynamically-linked libraries, called scenario
plugins

Loaded into the core as needed

KN-25

Event Providers

Collect events from the environment

Create STAT events as defined in one or more language
extensions

Insert the events in the event queue of the STAT core
Created by subclassing the STAT_Provider class

Multi-threaded runtime supports the processing of multiple
event streams

KN-26

Response Modules

Contain libraries of actions that may be associated with the
evolution of one or more scenarios

Created by subclassing the STAT_Response class
Compiled into dynamically-linked libraries
Loaded into STAT core when needed

One or more actions can be associated with any state
defined in a loaded scenario plugin

Example actions

— write to file

— reset a TCP connection

— email to Network Security Officer

KN-27

STAT Framework Class
Hierarchy

Framework Classes

STAT_Object

STAT Extension = STAT Provider | STAT Scenario STAT_Response

STAT _Event STAT Type

KN-28

The Framework At Work

Define a Language Extension, i.e., the events, types, and
predicates to be used in a specific domain

Compile the extension into a Language Extension Module

Develop an Event Provider that transforms external data into
events as defined by one or more Language Extensions

Compile the Event Provider into a dynamically linkable module

Develop STATL scenarios that use the events defined in one or
more Language Extensions

Translate/compile the scenario into a Scenario Plugin

If necessary, develop response libraries to be used with the
scenario

Link everything together (shake well) and run your sensor
KN-29

Creating a Sensor

Off-line Process : Run-time Architecture

STATL
re Langua

STAT

AR O | ARBIRRION- Core Module

specific specific
Language Extension
Extension Module

Intrusion

Detection Intrusion
System Detection

Scenario Plugins
Language J Sensor

KN-30

A Family Of Sensors

USTAT (Host-based, Solaris, BSM auditing)

NetSTAT (Network-based, Linux/Solaris, network traffic)
WINSTAT (Host-based, Windows 2000, Security event logs)
LINSTAT (Host-based, Linux platform, Snare auditing)
WebSTAT (Application-based, UNIX, Apache logs)
AlertSTAT (Correlator, UNIX, IDMEF alerts)

KN-31

A Family Of Sensors

LogSTAT (Host-based, UNIX OS, syslog files)
ftpSTAT (Application-based, extension of LogSTAT)

aodvSTAT (Network-based, Linux, Wireless Ad-Hoc routing
protocol events)

AgletSTAT (Application-based, Linux, Aglets mobile code
system)

SnortSTAT (Application-based, UNIX, Snort plugin)
SienaSTAT (WAN Correlator, UNIX, SIENA events)

KN-32

OK, You Can Develop
Your Own IDS, But...

 What if one wants to change the configuration of a sensor at
run time, without having to stop the whole thing?

« How can one be sure that all the pieces (extensions,
providers, scenarios) fit together?

e What if one wants to control a multitude of sensors deployed
throughout the network?

e What if one wants to aggregate/fuse/correlate the alerts
produced by the deployed sensors?

KN-33

MetaSTAT

A communication and control infrastructure for STAT-based
Sensors

e CommSTAT communication infrastructure allows for the
exchange of alerts and control commands over secure
connections

« MetaSTAT Controller dispatches commands to the sensors

« The STAT Proxy mediates communication
— Performs local module management (installation/configuration)
— Relays commands to sensors (loading/activation)

KN-34

MetaSTAT

« MetaSTAT Configurator manages sensors
— Database of available modules and corresponding dependencies
— Database of current sensor configurations
— Allows the security officer to submit reconfiguration requests
— Checks for the meaningfulness of reconfiguration

« MetaSTAT Collector component aggregates sensor alerts in
a centralized database to support analysis and correlation

KN-35

MetaSTAT

KN-36

MetaSTAT: Main View

PS
File View Options Help
s ' i i N
S"if- Alertid: 12345.987654321 Severity: successful-recon-largesc...
E Classification: portsean Date: 2000-03-09
Host: bunuel.cs.ucsb.edu
Date: 2000-11-14 Ape §15
Time: 16:54:53 U TERel
A
. Total number of alerts: 20 Additional Details
s Unviewed alerts: 16 = |
4 new alerts!
Classification [Time | Viewed
529 08:12:32 H =
CVE-1999-128 10:01:25 H
unknown 16:23:435 & Not.es - - - - -
CVE-19899-128 10.01:25 m Serious threat intrusion. Take immediate action. - |
CVE-19939-128 10:01:25 H - Joe
CVE-1999-128 10:01:25 H
CVE-1999-128 10:01:25 H |
CVE-1999-128 10:01:25 H hd
CVE-1999-128 10:01:25 H S =
CVE-1999-128 10:01:25 [T =N
CVE-1999-128 10:01:25 H A CRET T —
CVE-1999-128 10:01:25 [Node-Address: 222.121.111.112 VICTIM #2
EEE'%E?E'ES 1221;: :: Username: UNKNOWN Node-Address: 123.234.231 122
CVE-1999-128 10:01:25 Ju sar=silinases WIS — Username: UNKNOWN
CVE-1999-128 10:01:25] Wi WS Service: UNKNOWN
portscan 15:31 * User-Group: UNKNOWN dport: UNKNOWN
33 0g8:12:32 * User-Category: UNKNOWN sport: UNKNOWN
out-of-hours activity, ha... 22:18:07 ¥ User-Serialnumber: UNKNOWN Portlist: 5-8
CVE-1999-128 10:01:25 * - 921
N2 oy k=
Correlation-Alertids . ™y Thread-Alertids
12345 --BOGUS 1234567890
12345 --MORE BOGUS ANALYZER 1234567830234, 12
12345 987654321 Analyzername: UNKNOWH,
1234567890 Node-address: UNKNOWH,
1234567890.364347 Ident: 12345
1234567890234.12
345097
o .

KN-37

MetaSTAT: Table View

PS
Help
s Y Alertid | Impact | Classification | Date | Time
= 12345 987654321 successful-recon-largescale portscan, 2000-03-09 15:31
1234567890 attempted-dos CVE-1999-128, 2000-03-09 10:01:25
1234567890.364347 attempted-recon 529, 2000-03-09 08:12:32
Host: bunuel.cs.ucsb.edu 1234567890234.12 attempted-user out-of-hours activity, ... 2000-03-09 22:15:07
Date: 2000-11-14 345007 attempted-admin 33, 2000-03-09 08:12:32
Time: 16:57:12 client2#1 attempted—dos CVE-18909-128, 2000-03-089 10:01:25
. A ilclientz#2 attempted-dos CVE-1999-128, 2000-03-09 100125
ra Total number of alerts: 20) |client2#3 attempted-dos CVE-1999-128, 2000-03-09 10:01:25
! Unviewed alerts: 14 client2#4 attempted-dos CVE-1999-128, 2000-03-09 100125
client2#5 attempted-daos CVE-1999-128, 2000-03-09 10:01:25
client3#1 attempted-dos CVE-1999-128, 2000-03-09 100125
Classification [Time [Wiewed client3#2 attempted-dos CVE-1999-128, 2000-03-09 10:01:25
33 0g:12:32 & client3#3 attempted-dos CVE-1999-1Z28, 2000-03-09 10:01:25
3 0g:12:32 B client3#4 attempted-dos CVE-1999-1Z28, 2000-03-09 10:01:25
CVE-1393-128 10:01:25 K clients #1 attempted-dos CVE-1999-128, 2000-03-09 10:01:25
CWE-1333-128 10:01:23 B clients#z attempted-dos CVE-1999-1Z28, 2000-03-09 10:01:25
CVE-1393-128 10:01:25 K clients #3 attempted-dos CVE-1999-128, 2000-03-09 10:01:25
CWE-1333-128 10:01:23 B clients #4 attempted-dos CVE-1999-1Z28, 2000-03-09 10:01:25
CVE-1999-128 10:01:25 I~ clients #3 attempted-dos CVE-1999-128, 2000-03-09 10:01:25
CWE-1333-128 10:01:23 & hitchcock.cs.ucsh.edu-20... lunknown unknown, 2000-11-14 16:23:43
CVE-1099-128 10:01:25 Ju
CVE-1999-128 10:01:25 3
CVE-1999-128 10:01:25 o
CVE-1999-128 10:01:25 J
CVE-1999-128 10:01:25 J
CVE-1999-128 10:01:25 J
CVE-1999-128 10:01:25 J
CVE-1999-128 10:01:25 J
CVE-1999-128 10:01:25 3
out-of-hours activity, ba... |22:18:07 *
portscan 15:31 *
unknown 16:23:43 &
LS =4

KN-38

MetaSTAT: Tree View

B STAT Alert- er <2 ETe
File View Options Help
~ Tree View
S—I § _4 <IDMEF-Message version="0.1" xml:space="default" xmlns="http:/ /www ietf.org/internet-drafts / draft-ietf-idwag-id
E @ 4 <alert alertid="12345.987654321" impact="successful-recon-largescale" version="1" xml:space="default">
Host: bunuel.cs.ucsb.edu @ 9§ <threadld=
@ 4 «Time offset="-0800" xml:space="default">
> @ 4 «ntpstamp xml:space="default">
Total number of alerts: 20 B 0x12345.0x67830
g Unviewed alerts: 14] _,, N
@ 4 «date xmlispace="default">
2000/03/09
Classification [Time | Wiewed @ 4 <time xml:space="default">

33 08:12:32 15:31

529 pegte s K @ 4 <Analyzer ident="12345" xml:space="default">

EVE-1OR0 150 OO B @ 4 «Node category="dns" ident="0" xml:space="default">

g:g:iggg:i;: 122 ;2 :: @ 4 <name xml:space="default">

CVE-10980-128 10:01:25 H correlator0l.bigcompany.com

CVE-1999-128 10:01:25 H @ 4 «Classification origin="vendor-specific" xml:space="default">

CWE-1999-128 10:01:25 * @ 4 «<name xml:space="default">

CVE-1999-128 10:01:25 H partscan

CVE-1933-128 10:01:25 & @ 4 <url xml:space="default">

CVE-1999-128 10:01:25 H http: f fwwwe vendor.comfpartscan

gx?isgs_i;: iggi;: :: @ 4 <Source sourceid="0" spoofed="unknown" xml:space="default">

CVE:1999:128 10;0 ;25 1 @ 4 «Node category="unknown" ident="0" xml:space="default">

CVE-1999-128 10:01:25 1 @ 4 <Address category="ipvd-addr" ident="0" xml:space="default"=

CVE-1999-128 10:01:25 H @ 4 «address xml:space="default">

CWE-1999-128 10:01:25 - 222.121.111.112

cut-of-hours activity, ba... |22:18:07 * @ 4 <Target decoy="unknown" targetid="0" xml:space="default">

portscan 15:31 & @ 4§ <MNode category="dns" ident="0" xml:space="default">

unknown 16:23:43 H @ | <name xmlspace="default">

@ | <Address category="ipv4-addr’ ident="0" xml:space="default"> =
Messages

NS

KN-39

Module Database

e Models and stores the information about

— The available modules (Language Extensions, Event Providers,
Attack Scenarios, and Responses)

— A number of external components (e.g., a specific auditing facility)

 Models and stores the dependencies between modules and
components

— Activation dependencies: Module A needs module B in order to be
loaded and activated

— Functional dependencies: Module A needs module B in order to
produce meaningful results or any results at all

KN-40

Module Management

Each Module may be

— Installed
— Loaded
— Activated

A STAT sensor configuration is uniquely defined by a set of
Installed/activated modules and available external
components

A configuration is valid if all the activation dependencies are
satisfied

A configuration is meaningful if it is valid and all the
functional dependencies are also satisfied

KN-41

Module Database Schema

Binary

N\

Module IndeX

module id
module id type

module id

bin

name
11 version

os platform
description

module id
state name

Plugin State

module id

Plugin Parameter

parameter filepath

module id

Response Function

function name

module i module id - | Activation Dependency
module id
dep module id)
- Module Output
module id , i
module id
1:N ' output type
J . output id
o Module Input
N1 module id module id
) LN . input type
' . input id
moduleid * | Functional Dependency
- module id
LN . external component id

Dependency Information .

KN-42

Sensor Database

 Models and stores information about the current
configuration of a Web of Sensors
— Installed modules (at each STAT Proxy site)
— Loaded/Activated modules (in each STAT Sensor)
— Available external components (at each host)

KN-43

Sensor Database

Installation Index : Sensor Index :
_ sensor id sensor id sensor id External Component
sensor id N1 sensor address N sensor id _
module id ' sensor port ' external component id
sensor id / f%
e —
N:1 % z
Y e S _— 3!
"| Activated module Activated plugin Activated response function |
' sensor id sensor id <sensor id, module id sensor id \
' module id module id module id .
' module type parameter filepath LN function name
' prototype id state name '
' plugin id _ '
Activation information . scenario prototype id ,

--

KN-44

MetaSTAT Configurator

Intrusion Detection Administrator (IDA) requires high-level
reconfiguration
The MetaSTAT Configurator

— Determines the required sensor configuration by examining the
Module Database

— Determines which modules are already available using the Sensor
Database

— Determines the steps that are necessary to complete the
reconfiguration

The MetaSTAT Controller sends the appropriate control
messages

STAT Proxies perform the installation
STAT Sensors reconfigure accordingly

KN-45

Example

Intrusion Detection Administrator (IDA) wants to deploy FTP
monitoring scenarios

The Module Database Is searched for suitable modules
A subset Is selected

The Module Database is examined for possible activation
dependencies

The Module Database is searched for possible functional
dependencies

Results trigger a new series of queries

KN-46

Dependency Graph

wu-ftp-bovf ftpd-quote-abuse
scenario A scenario |
é/ \I« 4 o
ft FTP PROTOCOL syslog SYSLOG
lang Ext event lang ext y evi% \)\
0 syslogl syslog2 Win-app-event

event provider event provider ~ €Ventprovider

ftp-protocol-verify 6// £ ﬁ/ £ AJ \\\E\\‘

scenario syslog syslog winevent NTlogging
A l | lang ext lang ext lang ext external component
f“ syslogd syslogd
external component external component
ftp tcpip STREAM

langext lang ext event
l 0
netproc
event provider
A
tcpip network-driver

lang ext external component
KN-47

Example

Configurator determines the complete set of dependencies

Configurator compares required modules with
Installed/activated modules as stored in the Sensor
Database

Configurator compiles a deployment plan
Plan passed to the Controller
Controller ships messages to the Proxies

Proxies perform installations and forward loading/activation
messages to the sensors

Detection begins...

Possible custom responses are shipped/installed/activated
KN-48

"
(\!
Wt
Notifications j Lﬁ[l
& wim it
Control/ 'L

aggregar - GlODAl Command and Control

devel.gov:
Attack Scenario
Database Network Model

Aggregator

\—Notifications—>

<—Control—

__________ -yl
“univ.edu \4 e

1

1

. / Network Discovery and Verification
1

, v

1

I
Aggregator

Network Sensors

STAT-based Sensors

I
I
: .
I
: Gateway .
I
I
I
I
I
I

Advantages of the
Approach

Fast development of intrusion detection sensor for different
platforms/domains

Highly customizable
Dynamic re-configurability

Support for the management of a very large number of
Sensors

Separation of analysis mechanisms from domain-dependent
elements and response functionality

Modules can be reused across sensors

KN-50

Advantages of the
Approach

Multiple Language Extensions and Event Providers can be
used within the same sensor

Responses can be associated with intermediate steps in
attack scenarios

Support for alert collection and distribution

Third-party tools can be easily integrated through STAT
Proxies

KN-51

People Involved

 Richard Kemmerer
e Giovanni Vigna

e Steve Eckmann

o William Robertson
 Fredrik Valeur

e Jingyu Zhou

e Per Blix, Jacob Copenhaver, Marco Cova, Chris Kruegel,
Darren Mutz, Rahul Nirmal, Siva Sankaridurg, Tirthendra
Sanyal, Vishal Kher, Sunita Verma

KN-52

Papers

 “NetSTAT a Network-based Intrusion Detection Approach,”
14th Annual Computer Applications Conference, Dec. 1998

 “NetSTAT a Network-based Intrusion Detection System,”
Journal of Computer Security, Vol. 7, No. 1, 1999

e “The STAT Tool Suite,” Discex 2000 , Jan. 2000
« “Attack Languages,” Third Info. Surv. Workshop, Nov. 2000

o “STATL: An Attack Language for State-based Intrusion
Detection,” Intrusion Detection and Prevention Workshop,
Nov. 2000

 “Designing a Web of Highly-Configurable Intrusion Detection
Sensors,” RAIDO1, Oct. 2001

KN-53

Papers

“Automated Translation Between Attack Languages,”
RAIDO1, Oct. 2001

“Intrusion Detection”, IEEE Security and Privacy Magazine,
April 2002

“Stateful Intrusion Detection for High-Speed Networks”, IEEE
Symposium on Security and Privacy, May 2002

“STATL: An Attack Language for State-based Intrusion
Detection,” Journal of Computer Security, 2002

“Designing a Family of Intrusion Detection Sensor,” ESEC
2003, Oct. 2003

“A Stateful Intrusion Detection System for World-Wide Web
Servers,” ACSAC 14, Dec. 2003

KN-54

	Link to presentation:

